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FREE-FORM AIRFOIL SHAPE OPTIMIZATION UNDER UNCERTAINTY USING

MAXIMUM EXPECTED VALUE AND SECOND-ORDER SECOND-MOMENT

STRATEGIES

LUC HUYSE*

Abstract. Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience

has indicated that a deterministic optimization for discrete operating conditions can result in dramatically

inferior performance when the actual operating conditions are different from the - somewhat arbitrary -

design values used for the optimization. Extensions to multi-point optimization have proven unable to

adequately remedy this problem of "localized optimization" near the sampled operating conditions. This

paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point

optimization with respect to "localized optimization" can be overcome. The practical examples also reveal

how the relative likelihood of each of the operating conditions is automatically taken into consideration

during the optimization process. This is a key advantage over the use of multipoint methods.

Key words, airfoil shape optimization, sensitivity analysis, statistical decision making, robust design,

stochastic optimization, second moment analysis, expected value optimization, multi-point optimization

Subject classification. Applied and Numerical Mathematics

1. Introduction. The design process of a structure or device is essentially a decision-making process.

Appropriate values of design variables, which optimize the performance of the design, need to be selected. The

specification of one or more design operating conditions allows the engineer to use deterministic optimization

schemes. An example hereof is found in airfoil design where a cruise Mach number and target lift coefficient

are specified and the objective is to minimize the drag under those constraints.

Optimization of an analytical model is a tool to develop better designs. Recent advances in computing

power and the development of more accurate computational fluid dynamics codes (CFD) should, at least in

theory, allow one to compute the optimal shape of an airfoil for a particular application. Unfortunately, the

use of deterministic optimization techniques leads to unexpected problems and often unacceptable results.

An important concern in the shape optimization of airfoils is the sensitivity of the final optimal design

to small manufacturing errors or fluctuations in the operating conditions. Tightening the tolerances in

the manufacturing process may prove prohibitively expensive or practically impossible to achieve. It is

expensive to produce such a precision design and impossible to maintain this pristine shape during routine

flight operations. Moreover, a certain variability in the operating conditions (e.g. cruise Mach number)

cannot be avoided. The sensitivity of the design performance to relatively small uncertainties provides an

incentive to use so-called "robust" optimization methods, which directly assess the effects of the uncertainties

on the design performance.

Several different non-deterministic approaches (Taguchi methods, bounds-based, minimax, fuzzy and

probabilistic methods) can be taken to achieve "robustness". This research deals with robust design of airfoils.

Other researchers have worked in the field of reliability-based design, and have demonstrated optimization of

aerospace structures (e.g. [7]). Figure 1.1 explains the difference between robust and reliability-based design

*ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199 (email: 1.huyse@larc.nasa.gov). This
research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while

the author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681-2199.



%
%

u,.

No engineering

applications

Cost-benefit analysis

Robust design &

optimization

Risk analysis

Reliability-based

design & optimization

Reliability is
not an issue

Everyday fluctuations Extreme events

Frequency of event

F_G. 1.1. Uncertainty classification

problems. In an engineering context, risk is typically defined as the product of the probability and the impact

or consequence of an event [16]. Structural reliability techniques are particularly useful to assess the risk

associated with infrequent but potentially catastrophic events (such as turbine blade failures [1]). On the

other hand, robust optimization techniques account for the impact of everyday fluctuations of parameters

(such as variations in operating speed) on the overall design performance assuming that no catastrophic

failures occur.

2. Achieving "Robustness". Developing optimization methods which result in more "robust" designs

sounds appealing. The term "robustness" has been coined to mean a variety of things. This section outlines

some of the more popular goals of "robust" design. Loosely speaking we can distinguish the following

meanings:

1. Identify designs which minimize the variability of the performance under uncertain operating con-

ditions. This is the objective of Taguchi methods [12]; they are most practical when the mean value

of the performance can be adjusted at negligible cost.

2. Mitigate the detrimental effects of the worst-case performance. This is the objective of MiniMax

strategies [23]. They choose the design with the "best" worst-case performance.

3. Provide the best overall performance over the entire lifetime of the structure or device [20]. This is

the objective of this work.

In the remainder of this paper the focus is on the third definition: robust optimization which tries to

achieve the best performance (or minimal cost) for all possible combinations of the operating conditions. The

paper focuses on the effectiveness of the optimization strategy rather than on particular implementations of

optimization algorithms.



To ourknowledge,non-deterministicapproachesarequitenewto aerodynamicoptimization.First,
anoverviewof existingdeterministicattemptsat introducingrobustnessis presented.Subsequently,we
introduceaninherentlystatisticalapproachbasedonVanMorgenstern'sMaximumExpectedValueCriterion
[20].Numericalresultsfora2Dairfoilshapeoptimizationproblemobtainedusingthedifferentoptimization
strategiesarecompared.

3. Airfoil Optimization Problemin TransonicRegime.

3.1. Problem Formulation. In this sectionwepresenta transonicairfoiloptimizationproblemto
whichthe variousoptimizationstrategieswill beapplied.All optimizationsusetheNACA-0012profile
asthebaselinegeometry.TheNACA-0012is splinedusing23controlnodes.Thedesignvariablesin the
optimizationproblemaregivenbytheverticalpositionsofthecontrolnodesandtheangleofattacka. Three

control nodes are in locked positions: one at the leading edge, and a double control node at the trailing edge.

Box constraints limit the maximum movement of each of the 20 spline control nodes (see Figure 3.1). The

inviscid Euler equations for the flow are discretized on unstructured meshes [4]. The sensitivities of both lift

and drag with respect to the design parameters are efficiently calculated using a discrete adjoint formulation

[3].

F_c. 3.1. Design variables and box constraints for the airfoil

The objective is lift-constrained (Cl _ Cl*) minimization of the drag Cd over the Mach range M •

[0.7, 0.8].

f mindeD Cd(d,M) over M • [0.7,0.8]
(3.1)

subject to Cl _ Cl*

where d is the vector of design variables and D is the design space. In this study, the Mach number is

the only uncertain operating variable; no additional model uncertainties are included. No constraints are

imposed on the pitching moment Cm. Because the NACA-0012 is not suitable for the transonic regime,

substantial improvements are to be expected, especially when the target lift Cl* is relatively high.

3.2. Grid Convergence. Four different grid resolutions were used to check the convergence of the

flow solution, especially the drag Cal. The far field boundary for grid 1 (Figure 3.2) is located at 10 chord

lengths. For grids 2, 3 and 4 (see Figures 3.3, 3.4, and 3.5) the far field boundary is located at 50 chord

lengths. For each of the grids the number of elements along both the airfoil inner boundary and the circular

far field boundary are specified in Table 1. Grid generator details are given in [18]. Figure 3.6 shows the

drag-profile in the Mach-range M • [0.7, 0.8] for a constant angle of attack a = 1.5 °. Grids land 2 are

considered low-fidelity models, while grid 4 is the high-fidelity or "truth" model. To limit the computational



cost,onlygrids1 and2will beusedfor theactualoptimizations.Uponcompletionoftheoptimizationa
checkusinggrids3or4canbeperformed.Theideais to usethefastlow-fidelitygridsasmuchaspossible,
but to verifytheresultsusingthehigh-fidelitygrids[2].

TABLE 3.1

Grids used in examples (Grid 1 is generated using Double9, all other grids are generated using AFLR [18])

Airfoil elem. Far field elem. Nodes Faces Elements

Grid 1 129 32 411 1170 822

Grid 2 124 32 3060 9025 6120

Grid 3 250 64 9246 27424 18492

Grid 4 500 128 32067 95574 64134

0 0.5 1 1.5
x/c

F_G. 3.2. Baseline NACA-O012 Airfoil: Grid 1

Figure 3.6 reveals that grids 1 and 2 overestimate the drag. The overestimation of grid 1 has a double

cause: it is an extremely coarse grid and the far-field boundary is located at 10 chord lengths only. The

overestimation in grid 2 is less than for grid 1 and occurs in equal amounts irrespective of the Mach number.

There is virtually no difference in the drag profiles computed on grids 3 and 4. Very similar grid-induced

differences in the drag profiles were observed in the Mach sweep curves (Cd as a function of M) for the

optimized airfoils.

3.3. Constraint Handling. In this problem we are not concerned with rapid Mach number variations.

Only slowly varying Mach numbers (steady states) are considered. Because the Mach number is stable, the

angle of attack can be adjusted to reach the required lift Cl*. Consequently, the constraint in Eq.(3.1) is not

probabilistic but remains deterministic. If point-in-time fluctuations are considered, the angle of attack can
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no longer be adjusted to assure that enough lift is provided. The constraint needs to be transformed into a

probabilistic constraint, which can only be met with a specified probability.

A mathematically straightforward approach to the optimization problem is to account for the inequality

constraint in Eq.(3.1) using a feasible direction search algorithm. For this purpose, we linked FUN2D [4] to

several optimizers - Modified Method of Feasible Directions (CONMIN) and Sequential Linear Programming

(ADS/SLP) - in iSIGHT v.5.5, a product of Engineous Software Inc.[11]. However, the lift constraint can

also be eliminated if we take advantage of the specific nature of the problem. We solved the resulting

unconstrained optimization problem using PORT, a bound constrained trust region algorithm [14].

4. Deterministic Approach to Airfoil Shape Optimization.

4.1. Formulation of Deterministic Optimization Problem: Slngle-Polnt Optimization. In

a deterministic context, aerodynamic shape optimization of airfoils is concerned with obtaining the most

aerodynamically favorable geometry for fixed - either known or assumed - operating or design conditions.

Consider the practical case where the drag Ca is to be minimized at a given, fixed free flow Mach number

M:

mindeD Cd(d, M)
(4.1)

subject to Cl,i(d, M) >_ C[ for i = 1, ..., n

This deterministic, single-point optimization model is not necessarily an accurate reflection of the re-

ality. The formulation in Eq.(4.1) contains no information regarding off-design condition performance. It

is documented by other researchers [9] that, with formulation Eq.(4.1), the drag reduction is attained only

over a narrow range of Mach numbers (see Figure 4.1a). We will refer to this in the remainder as "localized

optimization". Drela explains that the optimizer creates a "bump" on the airfoil to fill the transitional

separation bubble (see Figure 4.1b). This effectively reduces the drag penalty which occurs when a bubble

undergoes transition and reattachment [8]. However, the location of this bubble varies with M and this

explains the poor behavior in off-design conditions for this "locally optimized" design.
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FIG. 4.1. Single point optimization using Grid 2 and C/* = 0.2: drag profile and airfoil geometry

It can be concluded that the real problem is not with the optimization code, which is likely to perform

just fine, but with the problem formulation of Eq.(4.1). The "local" optimization effect is particularly



worrisomeif substantialvariabilityisassociatedwith theoperatingconditions.Trade-offsbetweendifferent
designconditionsshouldexplicitlybeconsideredin theproblemformulation.

4.2. Multi-Point Optimization. A straightforward,butheuristic,approachtoavoidpoint-optimized
designsis to considerdifferentMachnumbersandto generalizetheobjectivein Eq.(4.1)to a linearcombi-
nationofflightconditions(rnin total):

"_ d
(4.2) mindeD_i wiCd( ,Mi)

subjecttoCl,j(d, Mi) >_ C[ for j = 1,...,n

Practical problems arise with the selection of the flight conditions Mi and with the specification of the

weights wi. There is no clear theoretical principles to guide the selection, which is in fact largely left up to

the designer's discretion (see e.g. Refs. 6, 9 and 10).

With the multi-point formulation of Eq.(4.2), an improved Cd can be realized over a wider range of

Mach numbers M [9]. However, this formulation is still unable to provide a truly global solution by avoiding

localized optimization. In fact multiple "bumps" appear on the airfoil, one associated with each flight

condition Mi. In the transonic regime, each bump occurs at the shock foot location for each of the sampled

Mach numbers.

A clear example of "localized optimization" is given in Figure 4.2. This optimization was performed on

Grid 2, with lift constraint C[ = 0.4, using equal weight (wi = 0.25) for each design condition. Because the

drag is highest at the higher Mach numbers, the drag at those Mach numbers has been reduced significantly

during the optimization process. Figure 4.2 clearly indicates that these drag improvements occur only at

particular Mach numbers and are rapidly lost when the actual Mach number deviates from any of the selected

design Mach numbers.

Figure 4.3 explains this in more detail using 2 contour plots of the local Mach number. The operating

conditions (free flow Mach numbers) are very similar but the flow solutions (local Mach number) are very

different. The multi-point optimization process introduces geometric features to the airfoil which lock the

shock waves in place. Since we used four point optimization, we have 4 shocks (see also [9]). In the figure

on the left, four shocks can be distinguished along the top surface. In the figure on the right, the most-aft

shock has basically disappeared. The optimizer has locally modified the geometry and eliminated the shock

associated with Mach 0.8, which was one of the design conditions.

4.3. Heuristic Approach: Weighted Average of Geometries. Since derivatives have to be calcu-

lated for each variable at various operating conditions, the computational cost associated with multi-point

optimization using CFD is substantial. Knowledge-based methods, which incorporate some "common-sense

engineering knowledge" into the optimization process, may be a valuable and cheaper alternative. One such

example is the method of the Weighted Average of Geometries (WAG) [6].

In this method the optimal design is obtained as a weighted average of n single-point optimal designs,

each one of them corresponding to one of the n chosen operating conditions. The weighting factors depend

on the relative importance of each operating condition (similar to the wi's in Eq. (4.2) in multipoint design)

and on the assumptions made regarding the variation of the drag with geometry and Mach number (response

surface model).

The method is computationally efficient, but suffers some of the same drawbacks as the multi-point

optimization:
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1. As with multi-point optimization, the selection of design conditions to be included in the optimization

process is arbitrary.

2. Single point optimizations result in bumpy airfoils. Linear combinations of bumpy airfoils will remain

bumpy.

3. Campbell [6] assumes a quadratic variation of Cd with the geometry. This assumption may become



questionable when the geometries are much different due to large variations in Mach number.

5. Non-Determlnlstlc Approaches.

5.1. Design as a Declslon-Maklng Process. Designing a structure or device is essentially a decision-

making process. Appropriate values of the design variables d need to be selected which optimize the perfor-

mance or the utility of a design. The designer has full control over the design variables, such as the geometry

of the structure and the type and grade of materials used for it, but the operating conditions of a structure

or device, such as the loads or the operating speeds, will typically vary during the design life time.

Since each operating condition parameter may take on a range of values over the lifetime of the design, it

is possible to collect their histograms (and joint histograms). From a subjectivist point of view, the operating

conditions 0 are then effectively modeled as random variables.

The previous section indicated that a specific design may perform exceptionally well for a selected

operating condition, say the free flow Mach number M, but may perform poorly for slightly different values

of M, which are quite likely to occur. The impact of the uncertainty of M on the design performance should

be taken into account when the quality of a particular design is assessed.

5.2. Bounds-Based Methods. Bounds-based methods recognize that a designer does not have access

to data with unlimited precision: some of these data are intrinsically variable (operating conditions), some

of them can be collected or measured with limited precision only (sampling error), and sometimes the

measurement process itself is imperfect which introduces bias. Gu et al. [13] recognize that analytical and

numerical models fail to yield the "correct" result; they call the difference between the average experimental

data and the value obtained from the analysis code the bias error. All other errors are lumped into "random

variability". They assign bounds to each of those uncertainties and develop a methodology to incorporate

the bounds directly into the multi-disciplinary optimization [5].

In our opinion, the main drawback of bounds-based methods is that they essentially assume that all

outcomes within the specified bounds are equally likely to occur. This conflicts with the intuitive sense that,

by their very definition, extremes should occur with much lower frequency than average or "normal" behavior.

This implies that error bounds will grow quite rapidly as more and more uncertainties are explicitly considered

in the design or optimization process. An explicitly statistical approach takes the relative likelihood of

combined extremes versus other joint occurrences into account by means of the Probability Density Function

(PDF). In short two problems can be associated with the bounds-based approach:

1. Bounds cannot always be identified accurately.

2. Bounds-based methods are over-conservative.

5.3. Explicitly Statistical Problem Formulation. Reconsider the basic problem in Eq.(3.1): min-

imize the drag Cd over a range of free flow Mach numbers M while maintaining lift Cl _ Cl*. Note that M

is now treated as a random variable. The optimization problem Eq.(4.1) is now interpreted as a statistical

decision-making problem.

In the presence of uncertainty a designer is forced, in effect, to take a gamble. Under such circumstances,

rather than naively hoping for the best or over-conservatively focusing on the worst, the right decision consists

in the best possible choice of the design, whether favorable or unfavorable operating conditions occur. All

decision problems have two essential characteristics [20]:

1. A choice, or sequence of choices, must be made among various possible designs.

2. Each of these choices corresponds to a performance, but the designer cannot be sure a priori what

this performance will be. The exact performance also depends in part on unpredictable events, in

10
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this case the operating conditions.

In our example, only one initial choice (i.e. airfoil selection) regarding the design needs to be made (see

Figure 5.1). However, the method is easily extended to accommodate sequential decisions. For instance, we

may want to run some wind tunnel experiments in the hope of reducing the uncertainty on some mathematical

model predictions. A decision tree would indicate if the upfront cost of the prototypes is offset by the expected

reduction in parameter uncertainty.

According to the Von Neumann-Morgenstern statistical decision theory [20], the best course of action in

the presence of uncertainty is to select the design which leads to the lowest expected drag. This is commonly

known as the Maximum Expected Value criterion (MEV). The risk p, associated with a particular design

d, is identified as the expected value of the perceived loss associated with the design. The best design or

decision, which minimizes the overall risk, is referred to as the "Bayes' decision". In our problem formulation,

the Bayes' risk p* and Bayes' decision d* are given bu (5.1) and (5.2) respectively:

p* = mindeD fM Cd(d, M)fM(M)dM(5.1) subject to Cl(d, M) > Cl*

or

(5.2) P* = /M Cd(d*, M)fM(M)dM

where fM(M) is the probability density function of the free flow Mach number M.

The practical problem with formulation Eq. (5.1) is that integration is required in each of the optimization

steps. Since the objective function Cd is computationally expensive to evaluate, this approach, although

theoretically sound, becomes prohibitively expensive. Therefore a computational scheme that minimizes the

number of function calls is desirable.

11



5.4. Analytic Approximation of the Expectation Integral. When the variability of the free flow

Mach number M is not too large, a second-order Taylor series expansion of Cd around the mean value M

may be a sufficiently accurate model of the variation of the drag Cd with respect to M.

-- -- 1 2 i(5.3) Cd(d, M) -- Cd(d, M) + VMCd.(M -- M) + _VMCd. ( _ _)2

When substituted in the Bayes' risk expression (5.1), the linear term VMCd.(M -- M) in Eq.(5.3)

disappears after integration over M because the Taylor series is built around the mean value M. The Bayes'

risk is:

[ 02cd ]p* = mindeD Cd(d,M) + Var(M) _ld,_](5.4)

subject to Cl (d, M) _ Cl*

where Vat(M) denotes the variance of the Mach number M.

It seems that we have substituted an integration with an almost equally expensive computation of

a second-order derivative. Even though the approximation may result in only moderate computational

savings, this theoretical result provides additional insight into the problem. It follows from Eq.(5.4) that

the variability of M can affect the optimal design only if the objective function Cd is highly non-linear in

this parameter. This is the case near the drag divergence Mach number MDIV, where the drag undergoes a

sharp increase (recall Figure 4.1a).

In mathematical terms, the advantage of working with expected utilities is that the minimum is second-

order accurate with respect to variations in the parameters. This ensures a more global solution and "localized

optimization" will be avoided. This can also be explained in an intuitive manner: the second-order derivative

is a measure for the curvature. Since this curvature is now a part of the objective function, a design which

results in a drag trough or "cusp" as found in the optimal solution in Figure 4.1 will not be accepted by the

optimizer. The high curvature of the "cusp" would increase the objective in Eq.(5.4) and excessive localized

optimization will be avoided.

5.5. Direct Numerical Evaluation of Expectation and Comparison with Multi-Point Opti-

mization. The integration with respect to M in Eq.(5.1) can also be performed numerically. Irrespective

of the chosen integration scheme, the integral (5.1) can formally be written as (nk integration points):

(5.5) P*=min(nk_=l wk'Cd(d'Mk)+e(nk))dcD

where the integration error c(nk) --+ 0 as nk --+ (_.

Formulation Eq.(5.5) is strikingly similar to Eq.(4.2). It is therefore interesting to analyze how the

Bayes' decision d* compares with the multi-point solution and exactly how localized optimization is avoided.

In the multi-point approach the Mach numbers and weights need to be selected by the designer. In

the statistical approach, the weights are directly related to the relative importance of each Mach number

through the integration over the probability density. Which Mach numbers are used in the optimization

depends on the chosen integration scheme. In short, the statistical approach removes the arbitrariness from

the weighting process.

12



Carefulcomparisonof Eq.(4.2)with Eq.(5.5)revealstheshortcomingin the multi-pointformulation
whichcauseslocalizedoptimization.Numericalintegrationof Eq.(5.1)resultsin Eq.(5.5)andincludesa
random,zero-meanerrorterm _(nk), which decreases as the number of sampling points increases. The

multi-point optimization Eq. (4.2) differs from Eq. (5.5) only in the sense that this error term is not explicitly

considered in the objective function. However, omitting this error term from the optimization problem alters

the structure of the problem at hand. The multi-point optimization effectively looks for the design, which

minimizes the weighted sum of the goal function Cd, evaluated in the nk specified points Mk. There is

absolutely no control over what happens to the objective function Cd in the neighborhood around these nk

sampling points. During the optimization iterations, the shape of the goal function Cd(d, M) is altered. As

a result, the discrete sum in Eq.(4.2) may fail to be a good approximation of the integral in Eq.(5.1).

In effect, multi-point optimization will prefer a design dl over a design d2 even when design dl is

considerably worse than design d2 in all but the nk specified sampling points. Multi-point optimization

allows the optimizer to mold the goal function Cd to its own advantage. What was originally a random

integration error is no longer random, and the discrete sum in Eq.(4.2) no longer approximates the integral

in Eq.(5.1) at all.

This rather annoying behavior is avoided if we can prevent the optimizer from exploiting the approxi-

mation error in Eq.(5.5) to its own advantage. We need to make sure that the discrete sum in Eq.(5.5) really

is an approximation of the integral in Eq.(5.1) at all times. In general terms, we need to ensure that the

discrete sum Eq.(4.2) remains a good approximation of the integral in Eq.(5.1). An elegant solution is to

randomize the sampling points Mk in the evaluation of the integral but any adaptive optimization scheme

that varies the location of the integration points Mk for each optimization step will do. Randomization of

the integration points ensures that the optimizer maximizes the performance not just for nk specific values

of Mk, but for any set of values Mk, k = 1,... nk. To minimize the loss of accuracy in the integration due to

random location of the integration points, stratified sampling can be used to generate the Mk values. Our

experience with the spline-based integration also suggests that the sampling points should not be allowed to

be arbitrarily close to each other.

5.6. Additional Considerations. The use of Eq.(5.5) for the optimization instead of Eq.(4.2) leads to

numerical complications. Because of the random location of the integration points Mk, a repeated evaluation

of the objective function Cd for identical values of the design parameters d will lead to different results. This

makes it hard to identify whether a new design is really better than a previous one, or if the "improvement"

should be attributed to random fluctuations instead. When a trial solution d is still far away from the optimal

solution d*, large improvements ACd can be expected. This means that a very crude integration, which

requires very few function evaluations, will suffice in the early stages of the optimization. The improvement

of the goal function is expected to be smaller closer to the optimal solution, and more sampling points Mk

will be required to keep the integration error small enough. Current research focuses on the development of

a strategy which takes maximum advantage of this effect.

In addition, the physical and mathematical models themselves used for the objective function will not

be error-free. Each of these model errors can be treated as a random variable. Their effect on the optimal

solution is readily assessed by extending the integration over these additional random variables. It is believed

that the approximate second-order result in Eq. (5.4) will prove particularly useful for this purpose. In a first

step we minimize the drag while keeping the model parameters fixed at their average level. If the second

order derivative of the drag with respect to this model parameter at the solution of this simplified problem

(without explicit error modeling) is sufficiently small, it can be concluded that these model uncertainties
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will onlyhavea minimalimpacton thesolution.Otherwise,themodeluncretaintiesshouldexplicitlybe
includedin theproblemformulationandafull integrationisrequired.

6. Application to a 2D-Airfoll in TransonicRegime.

6.1. VariousOptimization Strategies.In thissectionwecompareresultsforthevariousoptimiza-
tionstrategiespresentedin thispaper.Weapplytheoptimizationtechniquesto thelift-constrainedairfoil
optimizationproblemintroducedearlier.In thisexampleweassumethattheMachnumbervariationsare
boundedbetween0.7and0.8.In particular,thefollowingoptimizationformulationsarecompared:

1. Optimizationat asingleMachnumber:variousMachnumbersareconsideredasthedesignpoint.
2. Multipointoptimizationusingm Mach numbers. Each of the design conditions has pre-determined

fixed weights wi = 1/m, see Eq.(4.2).

3. "Robust" optimization using a second-order second-moment approximation around the mean value

M = 0.75, see Eq.(5.4).

4. "Robust" optimization using stochastic integration. To allow for a direct comparison with the multi-

point results, fM(M) in Eq.(5.1) is a uniform distribution. Other distributions are considered as

well, which demonstrates the versatility of the expected value optimization method.

It is important to note that formulation 2 and 4 require a comparable computational effort.

6.2. Slngle-Polnt Optimization Results. The single point case has 21 design variables: the angle

of attack (_ and the vertical positions of the 10 spline control nodes at both the top and bottom surface of

the airfoil. Figure 4.1a indicates a dramatic reduction of the drag Cd is obtained at M = 0.76 (also see the

first entry in Table 6.1), but also reveals that this gain is rapidly lost when the free flow Mach number is

away from this design value.

TABLE 6.1

Comparison of the drag reductions with respect to the original NACA-0012 at the design point and over the entire Mach

range for single point optimization results.

Optimization Grid Target Design Mach ACd at the Actual total

model lift C[ number M design point reduction ACd

CONMIN Grid 2 0.175 0.76 44% 12%

PORT Grid 1 0.175 0.75 24% 11%

SLP/ADS Grid 2 0.2 0.75 49% 21%

SLP/ADS Grid 2 0.2 0.76 60% 18%

SLP/ADS Grid 2 0.4 0.75 84% 52%

SLP/ADS Grid 2 0.6 0.72 85% 30%

SLP/ADS Grid 2 0.6 0.75 87% 53%

SLP/ADS Grid 2 0.6 0.78 91% 78%

SLP/ADS Grid 2 0.6 0.80 75% 57%

The geometry plot in Figure 4.1b illustrates what happens. During the optimization a distinct "bump"

is formed on the airfoil surface. The optimizer takes advantage of all degrees of freedom to achieve the

lowest possible drag at the design Mach number M = 0.76, irrespective of what happens to the drag at

other Mach numbers. Obviously, there is a penalty to be paid for this: even though the drag reduction at

the design Mach number is 44%, the total average reduction over the entire Mach range is only 12% (results

obtained with Grid 2 and C[ = 0.175 using the CONMIN optimizer implemented in the iSIGHT package
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FIG. 6.3. Optimal drag profiles obtained using different 2-point optimization schemes (results obtained using Grid 2,

Wl ----w2 ----0.5, Cl* ----0.6 and SLP/ADS optimizer)

[11]). The use of a single-point optimization would lead to the false conclusion that a 44% improvement has

been achieved; the actual realized gain is only 12%.

When unconstrained optimization using PORT [14] after elimination of the lift constraint is used (results

for Grid 1 and Cl* = 0.175), the drag reduction at the design Mach number M = 0.75 is 24% and the actual

reduction over the entire Mach range is found to be 11%. It can be concluded that both methods to handle

the constraints lead to the same qualitative result. The numerical difference between the two results can be

attributed to the overestimation of the drag of the baseline NACA-0012 in Grid 1, which results in a larger

reduction in the optimized profile.

Qualitatively similar results are obtained for other lift values and design Mach numbers and are summa-

rized in Table 6.1. The localized optimization, illustrated in Figure 4.1, was previously documented by Drela

[9]. Figure 6.1 shows that the bump on the airfoil moves aft when the Mach number increases. This pushes

the shock towards the trailing edge and postpones the drag rise. Figure 6.2 indicates that the choice of the

design Mach number considered in the optimization has an enormous impact on the final drag profile and

airfoil geometry. The figure shows that simply selecting the average Mach number (so called Mean-Value

Optimization at M -- 0.75) or the Mach number with highest drag (M -- 0.80) does not guarantee good

overall performance over the entire Mach range.

6.3. Multi-Point Optimizations. The constrained multi-point optimization has 20 + rn design vari-

ables: the same 20 y-coordinates which describe the geometry and rn angles of attack. The minimum angle

of attack for which the lift constraint is satisfied, decreases with increasing free flow Mach number due to

compressibility effects [21]. Consequently, each design condition adds one additional angle-of-attack design
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and 0.7"8, wi = 0.25, Ct* = 0.17"5, and CONMIN optimizer)

variable.

The two-point optimization results shown in Figure 6.3 illustrate the shortcomings reported by Drela [9].

Optimization at selected Mach numbers results in clearly distinguishable drag troughs at each of the design

Mach numbers (see also Figures 6.4, 4.2 and 4.3). Drela leaves it up to the designer to determine which Mach

numbers to include in the objective in Eq. (4.2) and what weights to choose. Three "reasonable" selections

are compared with each other in Figure 6.3 and it is clear that, at least in this case, the selection of the

design conditions has an important effect on the final results. In particular the selection of the endpoints

of the Mach range can lead to troubling results. We observed this in both 2-point (Figure 6.3) and 4-point

(Figure 6.4) optimization.

Since the drag is higher in the upper part of the Mach range, one may want to include more design

Mach numbers from the upper part than from the lower part in the multi-point objective Eq.(4.2). This

procedure does not require any additional function calls and consequently keeps the computational cost

under control and should result in lower drag at the upper end of the Mach range. Figure 6.5 shows the

result of such a multi-point optimization. The selected Mach numbers are indicated on the chart and the

weights wi are obtained from the numerical integration using 4 fixed integration points. It can be concluded

that the maximum drag is indeed reduced, but a substantial penalty is to be paid near the lower end of the

Mach range. As a matter of fact the expected value of the drag has actually increased from 0.0044 to 0.0055

(assuming a uniform distribution for the Mach numbers between 0.7 and 0.8) compared with the result for

evenly spaced Mach numbers. Also, the distinct multiple drag troughs at each of the sample Mach numbers

persist, which indicates "localized optimization" as explained earlier.

All these results indicate that a multi-point optimization does indeed achieve a better overall drag
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reduction for both methods. This is in line with the findings of other researchers [9]. However, a drag-trough

is formed at or near each of the discrete design points. The drag increases rapidly away from the design

points. This is very clear near the high end of the Mach range.

6.4. Expected Value Optimization. Figure 6.6 shows that the expected value optimization strategy

results in a much smoother drag profile over the entire Mach range. The integration of the drag over the Mach

range is performed using spline-based inter/extrapolation. The resulting airfoil geometry is a lot smoother

as well. It can be concluded that this scheme results in a superior design for an identical computational

effort.

For the expected value scheme the integration points in Eq. (5.1) are altered slightly for each optimization

iteration. Consequently, we can say that the 4-point optimization minimizes a weighted sum of 4 fixed design

conditions, whereas the robust scheme minimizes the weighted sum of any 4 design conditions. This avoids

"localized optimization". In this study a random perturbation scheme is used to change the integration

points, but other, more adaptive strategies are currently being researched. The number of integration points

must be sufficiently high so that the integration error caused by the change of integration points between

optimization steps is smaller than the decrease of drag in that particular optimization step (cfr. supra).

In his study, Drela [9] applies larger weights to the upper part of the Mach range to ensure "that

the upper part is not compromised excessively by the less important lower part". Our statistical decision

approach suggests that this can only be justified when the higher Mach numbers are more likely to occur,

i.e. when the PDF fM (M) is concentrated in the upper Mach range. The weights follow automatically from

the integration procedure and are as such not directly linked to the actual values of the drag Cd(M).
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6.5. Impact of PDF. In most practical cases the Mach number will not be uniformly distributed over

a given range. A key advantage of the explicitly statistical approach is that the relative importance of each

operating condition is automatically accounted for through the PDF.

Quite often a cruise Mach number is set and the assumption of a (truncated) "normal" or Gaussian

distribution around this mean value seems appropriate. The truncated normal PDF is very well approximated

by a Beta distribution. The Beta distribution is always bounded within an interval [a, b] and has shape

parameters oz1 and c_2, both greater than zero:

()(O_l--1) ()(0_2--1)

(6.1) Beta(x,a,b,(_l,(_2)= _-_ _-_

(b -- a) X B(oQ, oz2)

where B(al,a2)=, (al), (a2)/, (al + a2)is the Beta-function.

Depending on the value of al and a2, the Beta PDF can assume a variety of shapes (see Figure 6.8).

When oq ---- OZ2 the distribution is symmetric and can be used as an approximation for the truncated normal,

especially for ai _ 5. When oz1 ---- OZ2 ---- 1, the distribution becomes uniform. For OZ1 _ OZ2 the distribution is

skewed towards either left or right. Bath-tub distributions are obtained when both parameters in the PDF

are less than 1 (but greater than 0).

Figure 6.9 compares the optimal drag-profile obtained using three different Beta-distributions bounded

within [0.7, 0.8]. When a PDF Beta(3, 1) is assumed for the Mach number, the higher Mach numbers are

more likely to occur. Their impact is easily discerned from Figure 6.9. The greater weight of the higher

Mach numbers translates into a lower drag in the high Mach range. The trade-off is a higher drag at the
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lower end of the Mach range. For a Beta(l, 3)-distribution, a lower drag is obtained in the lower part of the

Mach range at the expense of much faster drag increase for higher Mach numbers. When a Beta(5, 5) PDF

is used, the higher likelihood of Mach numbers near the mean value M = 0.75 results in the lowest drag

of all three curves near the middle of the Mach range. The corresponding airfoil geometries are shown in

Figure 6.10.

This illustrative comparison reveals the importance of an accurate quantification of the PDF of the

Mach range. In general, careful data analysis is required when the PDF is selected for each of the uncertain

variables. Practical experience has revealed that especially the tails of the distributions need to be modeled

very carefully because they tend to have a large impact [17]. Cut-off values should most definitely not be

chosen arbitrarily!

6.6. Approximate Second-Order Second-Moment Method (SOSM). In this section we present

results using the deterministically equivalent problem formulation Eq. (5.4), which is based on a second-order

analytic approximation of Eq. (5.1).

Eq.(5.4) indicates that first-order sensitivities of the drag Cd with respect to the uncertain variable M

do not affect the expected value of the design. The second-order information represents the curvature of the

Cd(M) Mach sweep, which is indicative of "localized optimization". In the SOSM formulation, the weighting

between the drag and the curvature is determined by physics: it is given by the variance of the Mach number.

Figure 6.11 shows a considerable improvement in the robustness of the design.

The drag reduction is not quite as good as obtained using explicit numerical integration (Figure 6.7),

but the computational effort is a lot smaller. The method is particularly useful if higher order derivatives
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Fic. 6.10. Airfoil geometries for three Mach distributions (grid 2, Ct* = 0.6 SLP/ADS optimizer)
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are available (and numerically reliable) and several uncertain variables are present in the problem. Table

6.6 compares the relative computational cost. SOSM scales linearly with the number of random variables,

whereas full numerical integration may rapidly become prohibitively expensive. Because the method is based
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TABLE 6.2

Number of function/derivative evaluations required per optimization step (Note: SOSM requires less if analytic derivatives

are available)

Optimization Method

Single Point

SOSM

Expected Value

(using 4-point integration

1 Random Variable 3 Random Variables

1 1

3 7

4 64

on a second-order approximation of the objective function, SOSM will give the best results if the variance

of the random variables is relatively small.

7. Summary and Conclusions. The robustness of an optimal solution can be achieved by incorpo-

rating the variability of the operating conditions directly into the optimization problem formulation. The

practical application shows that a statistical approach leads to smooth airfoil geometries and drag profiles.

The suggested expected value optimization method is computationally similar to existing multi-point

optimization, which is widely accepted in industry. This increases the likelihood of acceptance by both

designers and theorists alike. The new formulation avoids the arbitrary selection of design conditions and

weighting factors; they automatically follow from the procedure.

A second-order second-moment approximate integration provides additional insight into the problem.

SOSM scales linearly with the number of design variables and may be the only feasible alternative when a

lot of uncertainties are considered. This will be the focus of future research.

The relative likelihood of each operating condition is directly taken into account. The importance of a

careful selection of the PDF is illustrated by means of an example. A randomized integration scheme ensures

that the optimizer cannot exploit approximation errors due to discretization. Further research into different

sampling schemes is required.

It can be concluded that airfoil shape optimization on the basis of the Euler equations leads to some

interesting candidate designs. However, viscous effects need to be included to achieve more realistic pressure

distributions.
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